ELIT PQ5 3-fas Energilogger og lekkasjestrømlogger

Modell og tilkoblinger	
Modell	ELIT PQ5
Støttede strømtenger	4 stk BNC terminal 333mV ELIT ELST-40 og ELIT ELST-68
	4stk BNC terminal Rogowski fleksibel ELIT EST-36 og ELIT EST-150
Lagring	8GB internt minne og USB disk
Strømforsyning	2*2900mAh PANASONIC lithium batteri. Ca. 10 timers
	brukstid. 230VAC/5VDC strømforsyning

Spesifikasjoner		
Modell	ELIT PQ5	
Produkttype	Håndholdt 1- og 3-fas energimåler, datalogger, effektanalysator	
	3PH4W(TN nett) 3PH3W(IT\TT nett)	
Tilkoblingsmuligheter	3PH3W+PE(IT nett inkludert lekkasjestrømlogging)	
	1PH2W (L-N); 1PH2W(L-L);1PH3W(L-L-N)	
Amalikasianan	Effektanalysering, kontroll av energimålere, jordfeillogging	
Applikasjoner	Harmonisk analyse, logging av opptil 3 lekkasjestrømmer	
Tilkoblinger	4 Strømtenger med mV utgang	
	5 Direktekoblet spenning 0-500V, eller via spenningstrafo	
Display	3.5 tommers TFT fargeskjerm	
Samplinger	8k per sekund	
Harmoniske	opp til og med 51. overharmoniske	
Mekanisk		
Vekt	850g (kun instrument)	
Dimensjoner	21*13*6cm	

Effektmeterets egenskaper

Måler og logger strøm og spenningsverdier for alle tre faser samt strøm i N leder og spenning PE-N. ELIT PQ5 kalkulerer også effektfaktor, aktiv effekt, reaktiv effekt, tilsynelatende effekt. Nedenfor følger en tabell med måleparametere

Sanntidsmåling

Følgende verdier vises i sanntid i displayet og logges i tillegg til internt minne hvis dette er aktivisert, eller til ekstern USB disk hvis dette er satt inn og logging startet ved å holde inne "INFO" knappen i 2sek. ("logger..." vises i display)

Parameter	Beskrivelse
Strøm	Per fase, nøytral, gjennomsnitt av faser og lekkasjestrøm
Spenning	L-L, L-N, gennomsnitt av faser, N-PE og fase-jord i IT nett
Frekvens	4565 Hz
Aktiv effekt	Totalt og per fase
Reaktiv effekt	Totalt og per fase
Tilsynelatende effekt	Totalt og per fase
Effektfaktor	Totalt og per fase
Litertiartoi	0.000 til 1
Vinkel	Spenningsvinkler og strømvinkler
Strømubalanse	Per fase, og mest ubalanse av faser
Spenningsubalanse	Mest ubalanse av faser

Minimums- og maksimumsverdier

Når sanntidslesing når sin høyeste eller laveste verdi, lagrer instrumentet minimum og maksimumsverdier i interminnet.

Fra displayet på måleren kan du:

- vise alle min./max. etter siste tilbakestilling og dato og klokkeslett for tilbakestilling .
- nullstille min./max. verdier ved å trykke F4 og velge "nullstille Min\Max"

Alle min./max. -verdier er historiske minimums-og maksimumsverdier. For eksempel er minimums fase A-B spenningen den laveste verdien i området fra 0 til 999.9 GV som har forekommet siden siste tilbakestilling av min./ max.-verdiene. Måleren gir tidsstempling for alle minimums-/maksimumsverdier.

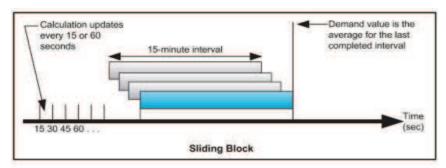
• Følgende tabell verdiene som er lagret:

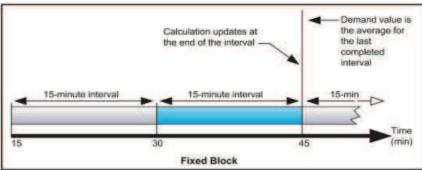
Enhet	Beskrivelse
Strøm	Per fase, N, og eventuell lekkasjestrøm
Spenning	Fase-fase eller fase-jord
Aktiv effekt	Per fase og totalt
Reaktiv effekt	Per fase og totalt
Tilsynelatende effekt	Per fase og totalt

"Behov" -->"Demand"/Maximum demand/MD

ELIT PQ5 måler og logger følgende parametere:

Enhet	Beskrivelse
Strøm	Per fase og gjennomsnitt av disse
Aktiv, reaktiv og tilsynelatende effekt	Per fase og totalt
Peak Demand Verdier	
Strøm	Per fase og gjennomsnitt av disse
Aktiv, reaktiv og tilsynelatende effekt	Per fase og totalt


"Demand" beregningsmetoder


"Effektbehov" (Engelsk: "Demand") er den energien som akkumuleres i en bestemt periode dividert på lengden av perioden. Gjeldende behov beregnes ved hjelp av aritmetiske integrering av gjeldende RMS-verdier i en tidsperiode, dividert på lengden av perioden. Hvordan effektmåleren utfører denne beregningen, avhenger av den valgte metoden.

For behovberegninger med blokkintervall, velger du en blokk av tid (intervall) som strømmåleren bruker for behovsberegning og modusen måleren bruker til å håndtere intervallet. 2 forskjellige moduser er mulig:

- Fast blokk Velg et intervall fra 1 til 60 minutter (i trinn på 1 minutt). PQ5 beregner og oppdaterer behovet på slutten av hvert intervall.
- Glidende blokk- Velg et intervall fra 1 til 60 minutter (i trinn på 1 minutt).. for perioder mindre enn 15 minutter, oppdateres verdien hver 15. sekund.. For perioder over 15min. oppdateres verdien hver 60 sekund. Instrumentet viser verdien fra siste fullførte intervall.

Følgende illustrerer de to måtene å beregne "behovsstrøm" (current demand) ved hjelp av de to blokkmetodene. For illustrasjonsformål er intervallet satt til 15 minutter

"Peak Demand" eller "toppbehov"

I minnet beholdes til en hver tid den aller høyeste behovsverdien(demand verdi). Denne huskes selv om instrumentet har vært avslått, og må manuelt nullstilles ved å trykke på F4. Man bør nullstille denne før hver nye logging, hvis man er interessert i denne verdien på aktuelt anlegg.

Energiavlesning

ELIT PQ5 beregner og lagrer per fase og totale energi verdier for aktiv, reaktiv og tilsynelatende energi. Du kan vise energiverdier på displayet. Oppløsningen til energiverdien endres automatisk fra Wh til kWh til MWh til GWh (kVAh til MVARh til GVARh).

Energiverdiene tilbakestilles automatisk til 0 når den når grensen for 999.9 GWh, 999.9 Gvah eller 999.9 Gvarh. Følgende tabell viser energimålingene fra PQ5:

Enhet	Beskrivelse
Energiverdier	
Aktiv energi	0 til 999.9GWh
Aktiv energi	Nullstilles ved 999,9
D. aldia annui	0 til 999.9GVARh
Reaktiv energi	Nullstilles ved 999,9
Tile we elekterede en enni	0 til 999.9GVAh
Tilsynelatende energi	Nullstilles ved 999,9

Verdier for effektkvalitetsanalyse

Følgende forkortelser og beregninger benyttes:

• Fundamental fase for strøm RMS: I1

· Grunnleggende fase for spenning RMS: V1

• RMS på opptil tre harmoniske fasestrømmer: Ix, Iy, Iz, x, y, z = 2, 3,..., N

• RMS på opptil tre harmoniske fase spenninger: Vx, Vy, Vz, x, y, z = 2, 3,..., N

• Total harmonisk forvrengning av fasestrømmen:

$$(THD)_I = \frac{\sqrt{I^2 - I_1^2}}{I_1}$$

• Total harmonisk forvrengning av fasespenningen:

$$(THD)_V = \frac{\sqrt{V^2 - V_1^2}}{V_1}$$

• Harmonisk forvrengning av opptil tre harmoniske på fasestrømmen og fasesepnningen:

$$HD_{V_x} = \frac{V_x}{V_1}, x = 2, 3, ..., N$$

$$HD_{I_x} = \frac{I_x}{I_1}, x = 2, 3, ..., N$$

$$HD_{I_y} = \frac{V_y}{V_1}, y = 2, 3, ..., N$$

$$HD_{I_y} = \frac{I_y}{I_1}, y = 2, 3, ..., N$$

$$HD_{I_z} = \frac{I_z}{I_1}, y = 2, 3, ..., N$$

$$HD_{I_z} = \frac{I_z}{I_1}, y = 2, 3, ..., N$$

THD gir et mål på den totale forvrengningen tilstede i en bølgeform. THD er forholdet mellom harmonisk innhold til grunnleggende frekvensen og gir en generell indikasjon på kvaliteten av en bølgeform. THD beregnes for både spenning og strøm.

Følgende verdiene vises i display for effektkvalitet, THD:

Prosentverdi av grunnfrekvens(50 Hz):Totalt, 2(100Hz), 3(150Hz), 4, 5,,..., 51 (51. harmoniske) per fasestrøm

RMS verdi: Maksimalt fem vises(3., 5., 7., 11., 13. som standard)Alle mellom 2 og 51 kan velges i oppsett per fasestrøm

Prosentverdi av grunnfrekvens(50 Hz): Totalt, 2, 3, 4, 5,,, 51 (51 ganger) per fase spenning

RMS verdi: Maksimalt fem vises(3., 5., 7., 11., 13. som standard)Alle mellom 2 og 51 kan velges i oppsett per fase spenning

Lagring av data

ELIT PQ5 logger enten til internt microSD kort 8GB eller til ekstern USB minnepinne(anbefalt)

Loggeintervall	1s til 9999s (standard 1min)			
Format for lagring av data	csv			
	8GB internt + ekstrern USB			
Lagringskapasitet	Lagrer ca 2.5kB per loggeintervall			
	Logger ca 6 å	Logger ca 6 år før internt minne er fult ved 1min intervall (kan slettes		
	Strøm harmonisk fil	ITHD(%),IHD2(%),IHD3(%),,,,,IHD51(%) (Each phase)		
	Spenning Harmonisk fil	UTHD(%),UHD2(%),UHD3(%),,,,,UHD51(%)(Each phase)		
		Spenning(V);UTHD(%);Strøm(A);ITHD(%);		
Data registreres i tre forskjellige filer:		Frekvens(Hz);Effektfaktor		
		Strøm "Demand"(A);		
		Strøm "Peak Demand"(A) & Dato;		
		(For hver fase og gjennomsnitt)		
		Aktiv effekt(W) ;Reaktiv effekt(Var);Tilsynelatende effekt(Va)		
	"DataSheet"	Aktiv-(Wh);Reaktiv-(Varh);Tilsynelatende-energi(Vah)		
	Fil med generelle elektriske	(For hver fase og totalt)		
	parametere	Totalt aktivt effekt "demand"(W)		
		Totalt aktivt effekt "Peak Demand"(W)&Dato		
		Totalt reaktivt effekt "demand"(Var)		
		Totalt reaktivt effekt "Peak Demand"(Var)&Dato		
		Totalt tilsynelatende effekt "demand"(Va)		
		Totalt Tilsynelatende effekt "Peak Demand"(Va)&Dato		

Verdier som manuelt stilles

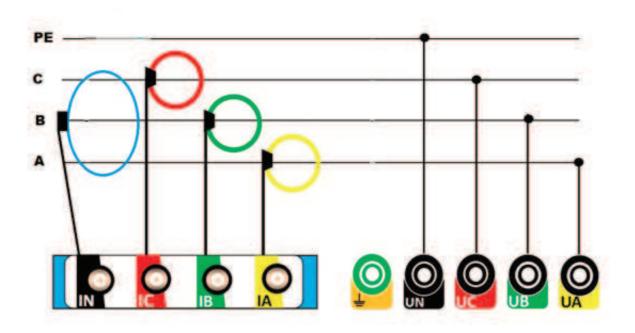
Benevnelse	Beskrivelse
"Nullstill" som standard på F4 knappen	
Maksimum og minimumsverdier	Nullstilles manuelt for viste verdi i display
Toppverdier for "demand"(se side 3)	_
Kalkuleringsmetode for "MD" strøm	1 til 60 min
Kalkuleringsmetode for "MD" effekt	1 til 60 min

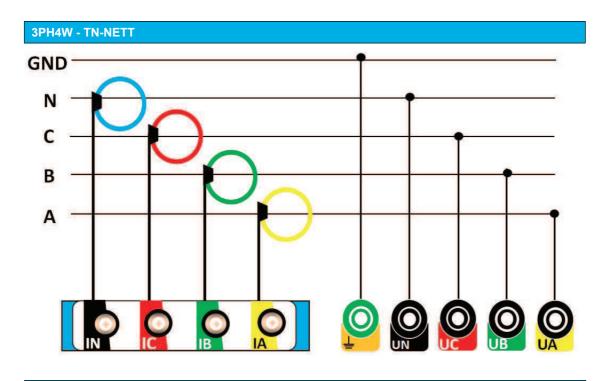
Bruksområde	
Brukstemperatur	-25℃ til +55℃
Lagringstemperatur	-40°C til +85°C
Bruksområde luftfuktighet	5 til 95% RH ved 50℃(ikke-kondenserende)
Forurensningsgrad	2
Overspenningskategori	CAT III 600V, for distribusjonssystem opp til 277/480VAC
Dielektrisk holdfasthet	iht. IEC61010-1, Dobbelisolert frontdisplay
Brukshøyde over havet	3000m maks
IP beskyttelsesgrad	IP20 iht. IEC 60629
Farge	Svart/blå
Garantitid	12 måneder
EMC	
Elektrostatisk utladning	Level IV(IEC61000-4-2)
Immunitet mot strålingsfelt	Level III (IEC61000-4-3)
Immunitet mot transienter	Level IV (IEC61000-4-4)
Immunitet mot overspenninger	Level IV (IEC61000-4-5)
Utførte immunitetstester	Level III (IEC61000-4-6)
Immunitet mot elektromagnetiske felt	0.5mT (IEC61000-4-8)
Utførte og testede utstrålinger	Klasse B (EN55022)
I samsvar med standarder	
EN 62052-11,EN61557-12,EN 62053-21,EN 62053-22,EN 62053-23,EN 50470-1,EN 50470-3,	
EN 61010-1,EN 61010-2,EN 61010-031	

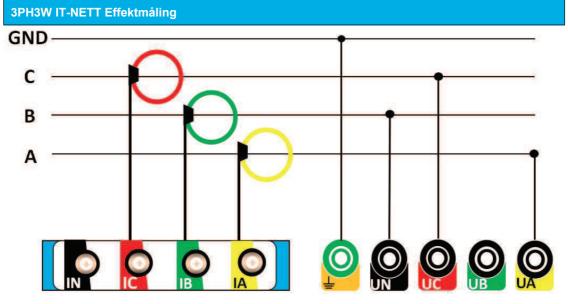
Spesifikasjoner

Målenøyaktighet			
	600A(0.5% fra 6A til 7	720A)	
Nominell strøm (3 valgbare nivå)	3000A(0.5% fra 10A til 3600A)		
	6000A(0.5% fra 20A til 7200A)		
Tilgjengelige fleksible strømtenger	600A	ELIT EST-150 og ELIT EST-36(standard)	
	3000A	på forespørsel	
	6000A	EST-150	
Character from all an American all a standard and a	Primærstrøm:	fra 1A til 999999A	
Strømtrafoer eller tradisjonelle strømtenger med mVAC utgang	sekundarutgang:	fra 0.001mV til 707mV	
Spenning	0.2% fra 5 til 600V		
Effektfaktor	±0.005		
Aktiv og tilsynelatende effekt	IEC62053-22 Class 0	.5	
Reaktiv effekt	IEC62053-21 Class 2		
Frekvens	0.01% fra 45 til 65Hz		
Aktiv energi	IEC62053-22 Class 0.5s		
Reaktiv energi	IEC62053-21 Class 2		
Inngangskarakterstikk for strøm			
	600A 0.5A til 720A		
Nominell strøm (3 valgbare nivå)	3kA 0.5A til 3	600A	
	6kA 0.5A til 7	200A	
Måleområde for inngang	1/2 ²⁵ mV - 707mV		
Maks overbelastning	2V i 10s per time		
Strømforsyning			
	2*2900mAh PANASONIC litium batteri		
Forsyning	Brukstid: 10 timer		
, ,	Ladetid: 8 timer		
	5V DC strømforsyning		
		, ,	
Forbruk		, u	
Skjerm på maks lysstyrke	2000mW		
Skjerm på maks lysstyrke Skjem på minimum lysstyrke	2000mW 1800mW	, ,	
Skjerm på maks lysstyrke Skjem på minimum lysstyrke Terminaler for tilkobling	1800mW		
Skjerm på maks lysstyrke Skjem på minimum lysstyrke Terminaler for tilkobling Strøminnganger	1800mW BNC tilkobling		
Skjerm på maks lysstyrke Skjem på minimum lysstyrke Terminaler for tilkobling	1800mW		

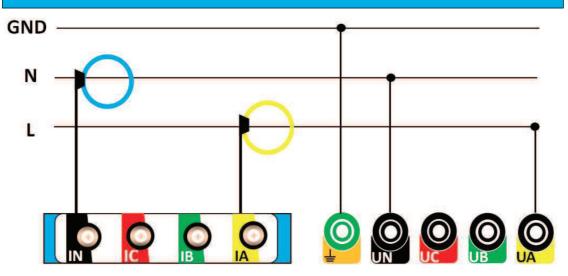
Oppkobling - Vises også på skjerm ved å trykke på "Info"

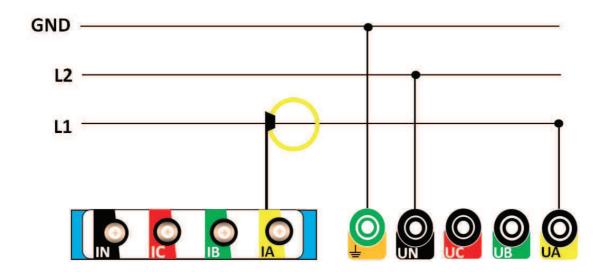

Valg av nettsystem gjøres ved å trykke på "F1" Velg ønsket system og koble opp etter bildene som følger.

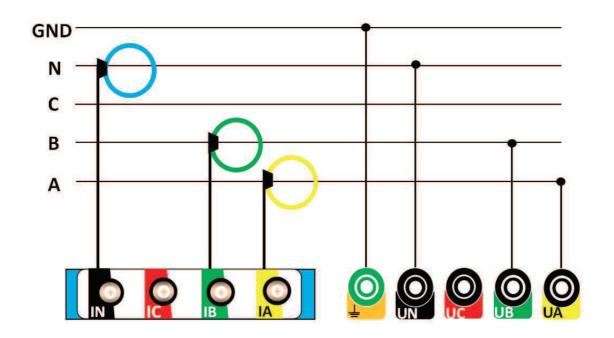

Strømtenger og fleksible strømtenger kan ikke ha utgang som overstiger 400mV


Spesialfunksjon for måling av jordfeil på IT nett: 3PH3W+PE

Gir mulighet for måling av Spenninger fase-fase og spenninger fase-jord. Alle tre belastningsstrømmer måles også i kobinasjon med lekkasjestrømmen. Strømtang koblet til N-terminal må være lekkasjestrømtang ELIT ELST-40 eller ELST-68. Husk da å trykke F2 velg CT for N terminal og korrekt omsetningsforhold.


3ph3W+PE




1PH2W L-N 1-fas TN-NETT

1PH2W L-L 1-fas IT-NETT

1PH3W L-L-N

Tilkoblinger

Spenning- og strøm-innganger

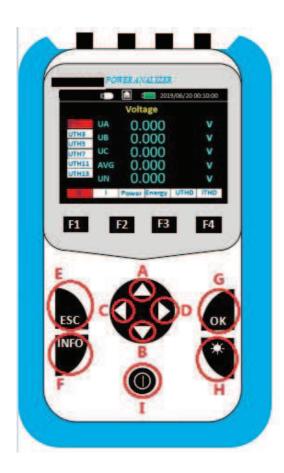
Batteri

Forsyning, USB DISK, RJ45 port

Bruk av ELIT PQ5

Introduksjon

PQ5 har en TFT LCD fargeskjerm for visning av verdier og knapper på front for kontroll av enheten.


Tilkoblingsterminaler på toppen og på siden.

Konfigurasjon

Fabrikkinstillinger er som følger:

Funksjon	Fabrikkinstillig
Oppkobling	3PH4W
	50Hz
	Rcoil
Strøm	600A
	50mV/kA@50H
Spenning	DIRECT
Logging	Switch:Disable
Logging	Period:60s
	DHCP:Disable
LANI	IP:192.168.1.10
LAN	Netmask:192.168.1.5
	Gateway:192.168.1.1
	H1=3
	H2=5
Harmonisk	H3=7
	H4=9
	H5=11
Passord(lav)	1000
Dato og tid	-
Demand Whehead	metode: glidende blokk;
Demand - "behov"	Intervvall 15 minutter
Nullstill	-
	F1:Endre oppkobling
F1, F2, F3, F4	F2:Endre strømtenger
	F3:Loggeinnstillinger
	F4:Nullstill Max\Min og demand

Grensesnitt

Knapper:

A:Opp - flytt markør på venstre side av display

B Ned- flytt markør på venstre side av display

C: Venstre - Flytt markør i bunnen av display

D: Høyre - Flytt markør i bunnen av display

E:"ESC", gå ut av meny, eller til oppsett fra målebilde

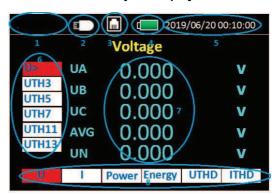
F:"INFO", viser koblingsbilder ved kort trykk. ved å

holde nede starter logging til ekstern USB hvis tilkoblet.

G: "Enter" Få mer informasjon hvis markør er på område med ">" etter benevnelse som "U>" Dette gir tilgang til MAX\MIN verdier osv.

H:"Lys" velg ønsket nivå av bakgrunnslyd

I:"Power" AV/PÅ langt trykk 3 sekund, etterfulgt av pip.


F1:Endre oppkobling

F2:Endre strømtenger

F3:Loggeinnstillinger

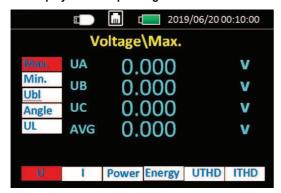
F4:Nullstill Max\Min og "demand"

1. Generell infomasjon i display

- (1) ELIT AS
- (2) USB DISK symbol for tilkoblet
- (3) RJ45 symbol for tilkoblet
- (4) Batterinivå
- 5 Dato og tid
- (6) Fra øverst til nederst: Spenning,harmonisk spenning: 3(150Hz),5(250Hz),7,11,13
- (7) Målte verdier
- 8 Fra venstre til høyre

Spenning - Strøm - Effekt - Energi - THD spenning -THD strøm

2. Displayoversikt spenning



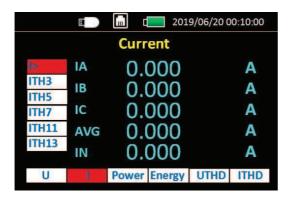
Venstre område ovenfra og ned:

"U >" Spenning RMS- verdi (mer info trykk "OK")
"UTH3" tredje spenning harmonisk RMS verdi
"UTH5" femte spenning harmonisk RMS verdi
"UTH7" syvende spenning harmonisk RMS verdi
"UTH11" ellevte spenning harmonisk RMS verdi
"UTH13" trettende spenning harmonisk RMS-verdi

Når markør er på **"U >" trykk "OK"** Skjerm med ytteligere info vises. Se neste side:

2.1 Displayoversikt spenning utvidet info etter "OK"

Venstre område fra topp til bunn:


"maks." Spenningens maksimumsverdi

"min." Spenningens minimumsverdi

"vinkel" Spenningsubalanse i grader

"UL" linjespennings verdi (fase-fase TN nett)

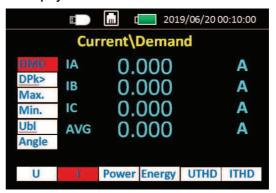
3. Displayoversikt for strøm:

Venstre område ovenfra og ned:

"U >" Strøm RMS- verdi (mer info trykk "OK")

"UTH3" tredje harmonisk strøm, RMS verdi

"UTH5" femte harmonisk strøm, RMS verdi


"UTH7" syvende harmonisk strøm,RMS verdi

"UTH11" ellevte harmonisk strøm, RMS verdi

"UTH13" trettende harmonisk strøm, RMS-verdi

Når markør er på "I >" trykk "OK" Skjerm med ytteligere info vises. Se punkt 3.1

3.1 Displayoversikt strøm utvidet info etter "OK"

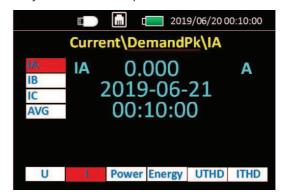
Venstre område fra topp til bunn:

"DMD"" strømbehov" eller "Demand current"

"DPK>" maksimums behov for strøm(demand peak)

(OK for mer info se 3.1.1)

"maks." Strømmens maksimumsverdi


"Min." Strømmens minimumsverdi

"ubl" ubalanse grad på strøm

"vinkel" strømmenes vinkel

3.1.1: Maksimumsbehov for strøm

Current Maximum demand(tredje skjerm)Etter at "OK" er trykket med markøren på "DPK>"

Venstre side fra topp til bunn::

"IA" Fase A(L1)" Maximum demand" strøm

"IB" Fase B(L2)" Maximum demand" strøm

"IC" Fase C(L3)" Maximum demand" strøm

"AVG" Gjennomsnitt "Maximum demand" strøm alle faser

4. Displayoversikt for effekt

Venstre side fra topp til bunn:

Aktiv effekt(trykk OK for mer info)

Reaktiv effekt(trykk OK for mer info)

Tilsynelatende effekt(trykk OK for mer info)

Effektfaktor

Fundamental effektfaktor

4.1.1 Current Maximum demand Etter at "OK" er trykket med markøren på "DPK>"

Venstre side fra topp til bunn: :

"PA" Fase A(L1)" Maximum demand" effekt

"PB" Fase B(L2)" Maximum demand" effekt

"PC" Fase C(L3)" Maximum demand" effekt

"Sum" Totalt "Maximum demand" effekt alle faser

OBS: skjerm for reaktiv og tilsynelatende er lik som over

4.1 Displayoversikt effekt utvidet info etter "OK"

Venstre område fra topp til bunn:

"DMD"" effektbehov" eller Demand power

"DPK>" maksimums behov for effekt(demand peak) (OK for mer info)

"max." maksimumsverdi effekt

"Min." minimumsverdi effekt

5.0 Displayoversikt for energi

Venstre side fra topp til bunn:

Aktiv energi(trykk OK for mer info)

Reaktiv energi(trykk OK for mer info)

Tilsynelatende energi(trykk OK for mer info)

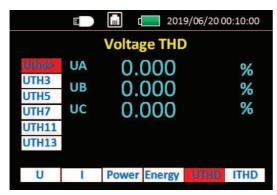
"Freq" Frekvens

"

5.1 Aktiv energi kWh etter "OK" på "EP>"

Venstre område fra topp til bunn:

EPA= Aktiv energi fase A (Totalt 9 bit)


EPB= Aktiv energi fase B (Totalt 9 bit)

EPC= Aktiv energi fase C (Totalt 9 bit)

SUM= Aktiv energi på alle faser (Totalt 9 bit)

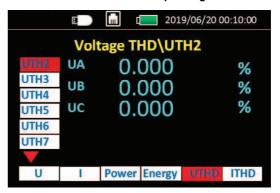
MERK: Reaktiv energi(EQ>) og tilsynelatende energi (ES>) har samme visning av verdi.

6. Displayoversikt for overharmonisk spenning

Venstre område ovenfra og ned:

"Uthd >" Spenning %- verdi (mer info trykk

"OK") "UTH3" tredje spenningharmonisk %-verdi


"UTH5" femte spenningharmonisk %-verdi

"UTH7" syvende spenningharmonisk %-verdi

"UTH11" ellevte spenningharmonisk %-verdi

"UTH13" trettende spenningharmonisk %-verdi

6.1: 2. til 51. Overharmonsike spenning i % etter "OK"

"UTH2" andre overharmonsike(100Hz)

"UTH3" tredje overharmonsike(150Hz)

"UTH4" fjerde overharmonsike(200Hz)

.

"UTH51" femtiførste overharmonsike(2550Hz)

7.Displayoversikt for overharmonisk strøm

Venstre område ovenfra og ned:

"Ithd >" Strøm %- verdi (mer info trykk "OK")

"ITH3" tredje Strømharmonisk %-verdi


"ITH5" femte Strømharmonisk %-verdi

"ITH7" syvende Strømharmonisk %-verdi

"ITH11" ellevte Strømharmonisk %-verdi

"ITH13" trettende Strømharmonisk %-verdi

7.1 2. til 51. Overharmonsike strøm i % etter "OK"

"ITH2" andre overharmonsike(100Hz)

"ITH3" tredje overharmonsike(150Hz)

"ITH4" fjerde overharmonsike(200Hz)

..... Bla nedover med "pil ned"

"ITH51" femtiførste overharmoniske(2550Hz)

8. .Displayoversikt for meny, vises etter "ESC" i skjermbildet for standard måleverdier

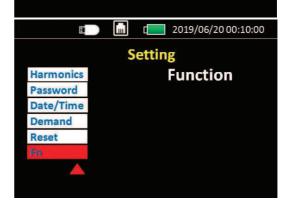
Trykk "ESC" for å gå tilbake til skjerm med måledata
Trykk venstre og høyre pil for å flytte markør
Trykk "OK" med markør på "SET" for å gå inn i
oppsettmenyen for å gjøre eventuell endringer
Se påfølgende sider for muligheter i oppsett.

9. Første skjerm etter "OK" på "SET" - Oppsett

Password(Lav):1000 (fra fabrikk)

Trykk pil opp eller ned for å forandre siffer

9.1 Første skjerm i oppsettmenyen


LAN

Harmonics

Trykk vil venstre eller høyre for å markere annet siffer

Setting

Current
Voltage
Record

Venstre side fra topp til bunn:(Trykk "OK" for å se\endre)

"Kobling(Wire)" Valg av nettsystem(også på F1)

"Strøm(Current)" Velg strømtang og omsetningsforhold(F2)

"Spenning(Voltage)" Omsetning på eventuell spenningstrafo

"Logging(Record)" Valg av loggeintervall og av/på(F3)

"LAN" MODBUS TCP innstillinger

"Harmonisk" Velg hvilke 5 harmoniske som skal vises

"Passord" Endre passord (standard: 1000)

"Dato/Tid" Endre dato og tid

"Demand" Valg av instillinger demand og maximum demand

"Nullstill" Nullstill Energi/Min/Max verdier(F4)

"Fn" Endre funksjon på knappene F1 F2 F3 F4

9.1.1 Valg av nettsystem(etter F1)

Trykk "pil opp" eller "pil ned" for å endre verdien/ nettsystemet som er valgt.

Trykk "OK" for å bekrefte og gå til neste linje og lagre "Mode" Alternativer for nettsystem:

- "3PH4W" Tre fas 4-ledersystem(TN)
- "3PH3W" Tre fas 3-ledersystem(IT/TT)
- "1PH2W_LL" En fas system med 2 faseledere(IT/TT)
- "1PH2W LN" En fas system med fas og nøytral(TN)
- "1PH3W_LLN" To fas 3 ledersystem (TN, USA)
- "3PH3W+PE" For jordfeillogging på IT/TT nett,

lekkasjestrøm og fase-jord+fase-fase spenninger

9.1.2 Instilling av strømtenger (etter F2)

Velg "IABC" for å endre strømtenger(Rcoil) til fasene og eventuelt til lekkasjestrømlogging(CT)

Velg "IN" for å velge strømtang(Rcoil) til N leder og lekkasjestrømtang(CT) ved 3PH3W+PE.

9.1.2.1 Current secondary interface setting.

Trykk "opp/ned" for å endre verdi på merket linje Trykk "høyre/venstre" for å endre siffer som er markert Trykk "opp/ned" for å endre verdi på merket siffer

Velg **Rcoil** hvis fleksibel strømtang benyttes (EST-36: 600A eller EST-150: 6000A

FSA:Velg 600A for EST-36 eller 6000A for EST-150 **Coil**:Dette skal samsvare med omsetning på strømtangen som benyttes:

600A 50mV/kA@50Hz3kA 85mV/kA@50Hz6kA 50mV/kA@50Hz

Velg "CT", strømtilkobling hvis strømtang ELIT ELST-40 eller ELST-68 benyttes (eller strømtrafo med 333mV utgang)

"CT Pri(A)" = Primærstrømmen på strømtang (1A på ELST-40 og ELST-68)

"CT Sec(mV)":Utgangssignal fra strømtang/trafo med valgt primærstrøm (373mV ELST-40/68) Se info på strømtang som benyttes for korrekt innstilling.

HUSK: Trykk OK to ganger etter valgt innstilling for å lagre.

9.1.3 Spenningsinnstilling

Hvis man ikke har direktekobling på spenningen kan omsetning på spenningstrafo settes her. F.eks. 22kV/100V eller lignende

9.1.3.1 Spenningsinstilling sekundært display

Trykk "opp/ned" for å endre verdi på merket linje

Trykk "høyre/venstre" for å endre siffer som er markert

Trykk "opp/ned" for å endre verdi på merket siffer

"UABC Con" og "UN Con" : "DIREKTE" eller "VT" (VT= spenningstrafo)

Velg "**DIREKTE**", når direktekoblet til 230/400V Velg "**VT**",Når spenningstrafo benyttes

VT Pri(V): Primær spenning på trafo f.eks. 22000(22kV)

VT Sec(V): Utgangsspenning på tafo ved spenningen valgt på "VT Pri" f.eks. 100V på en 22kV/100V trafo

Hvis "Direkte" velges forsvinner valgene for VT

9.1.4 Instillinger for logging og overføring

Trykk OK for å komme til sekundært display, trykk pil opp/ned for å endre markert linje

"Logging" (Store) Trykk OK her for å skru av/på logging "Download" Trykk her for å overføre data fra internt minnekort til USB minnepinne(tilkobles på siden)

"Logging" Aktivert= logger til minnet eller ekstern USB hvis dette er koblet til.

Deaktivert= ingen logging kun måling "Intervall" Ønsket loggeintervall som alle verdier skrives til minnet. F.eks. ny linje hvert 60. sekund. (maks/min verdier innenfor hvert intervall lagres. Man går dermed ikke glipp av korte topper/bunner selv ved lengre loggeintervall, men man ser ikke hvor lenge de har vart innenfor hvert intervall)

9.1.4.2 Sekundært display under "download"

"BeginDT" Dato for når man ønsker data fra
"EndDT" dato for når man ønsker data til
Trykk OK for å overføre data fra valgt tidsrom til
ekstern USB-minnepinne. OBS: Maks
overføringhastighet er 12MB/min - Ved logging
over lengre tid eller med tett intervall anbefales
logging direkte til ekstern USB-minnepinnne.

9.1.6 Valg av overharmoniske som vises i display

Kun 5 kan vises i display, velg ønskede mellom 2. og 51.

9.1.7 Passordinnstillinger

Standard passord(lav) er 1000

9.1.8 Dato og tid

Flytt markøren med pil høyre/venstre. Endre verdi på markert siffer med pil opp/ned Bekreft og lagre med "OK"

9.1.9 Demand innstilling

"Method" ref side 3 og 4 i denne manualen:

"Glidende" eller "fast" velges med pil opp/ned Intervall (Min): velg ønsket tid fra 1-60 minutter

9.1.10 Nullstilling av verdier(F4)

MnMx: Nullstill maks/min verdier på strøm/spenning

DMDPk: Nullstill peakverdier på demand

Energi: Nullstill energiteller

9.1.11 Instilling av hurtigtaster F1, F2, F3, F4

Fn er valgene for knappene under displayet:F1 F2 F3 F4.

Velg ønsket funksjon med pil opp/ned og bekreft med "OK"

9.1.12 Information

Her vises instrumentets navn, firmware versjon og serienummer.

ELIT PQ5 Hand held Data Logger

Connectivity advantages	
Model	PQ5
Support Extra sensor	4pcs BNC terminal 333mV CT
	4pcs BNC terminal Rogowski coil
Storage	8GB Memory,USB DISK download
	(save intervals 1mins default)
Power	2*2900mAh PANASONIC lithium battery(wroking time: approx 10 hours)
	Or 5V DC power supply(included adaptor)

Feature

Specification			
Model	PQ5		
Product component type	Handhold;poly-phase;data logger;power analyzer		
Poles description	3PH4W 3PH3W 1PH2W (L-N); 1PH2W(L-L);1PH3W(L-L-N)		
Device application	Power analysis Data log		
Input type	External Rogowski coil External CT(333mV only)		
Display	3.5 inch TFT screen display		
Sampling rate	8k samples per second		
Harmonic	51th in the mean time		
Mechanical characteristics			
Weight	850g (with Accessory 2kgs)		
Dimension	L*W*D:21.5*13*6CM		

Power Meter Characteristics

The power meter measures currents and voltages and reports real-time RMS values for all 3-phases and neutral. In addition, the power meter calculates power factor, realpower, reactive power, and more.

The following sections list the metering characteristics of the power meter.

Real-Time Measuring

The following table lists the metering characteristics of the power meter for the real-time measurement:

Characteristics	Description	
Current	Per phase, neutral, and average of 3 phases	
Voltage	L-L, L-N, and average of 3 phases,N-PE	
Frequency	4565 Hz	
Active power	Total and per phase (signed)	
Reactive power	Total and per phase (signed)	
Apparent power	Total and per phase(signed)	
Power factor (True)	Total and per phase	
	0.000 to 1 (signed)	
Angle Voltage angle,Current angle		
Current unbalance	Per phase, most unbalanced of 3 phases	
Voltage unbalance	most unbalanced of 3 phases	

Minimum/Maximum Values

When any one-second real-time reading reaches its highest or lowest value, the power meter saves the minimum and maximum values in its nonvolatile memory.

From the power meter display, you can:

- view all min./max. values since the last reset and the reset date and time.
- reset min./max. values.

All running min./max. values are arithmetic minimum and maximum values. For example, the minimum phase A-N voltage is the lowest value in the range from 0 to 999.9GV that has occurred since last reset of the min./max. values. The power meter provides time stamping for all minimum/maximum values.

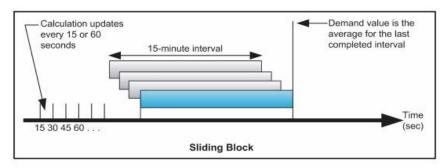
The following table lists the minimum and maximum values stored in the power meter:

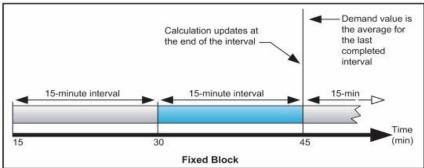
Characteristics	Description
Current	Per phase and average
Voltage	per phase and average
Active power	Per phase and total
Reactive power	Per phase and total
Apparent power	Per phase and total

Demand Readings

The power meter provides the following demand readings.

Characteristics	Description
Current	Per phase and average
Active, reactive, apparent power	Per phase and Total
Peak Demand Values	
Current	Per phase and average
Active, reactive, apparent power	Per phase and Total


Demand Calculation Methods


Power demand is the energy accumulated during a specified period divided by the length of the period. Current demand is calculated using arithmetical integration of the current RMS values during a time period, divided by the length of the period. How the power meter performs this calculation depends on the selected method. To be compatible with electric utility billing practices, the power meter provides block interval power/current demand calculations.

For block interval demand calculations, you select a block of time (interval) that the power meter uses for the demand calculation and the mode the meter uses to handle he interval. 2 different modes are possible:

- Fixed block Select an interval from 1 to 60 minutes (in 1 minute increments). The power meter calculates and updates the demand at the end of each interval.
- Sliding block Select an interval from 1 to 60 minutes (in 1 minute increments). For demand intervals less than 15 minutes, the value is updated every 15 seconds. For demand intervals of 15 minutes and greater, the demand value is updated every 60 seconds. The power meter displays the demand value for the last completed interval.

The following figures illustrate the 2 ways to calculate demand power using the block method. For illustration purposes, the interval is set to 15 minutes.

Peak Demand

In nonvolatile memory, the power meter maintains a maximum operating demand value called peak demand. The peak is the highest value (absolute value) for each of these readings since the last reset.

You can reset peak demand values from the power meter display. You should reset peak demand after changes to basic power meter setup such as power system configuration.

Energy Readings

The power meter calculates and stores Per phase and total energy values for active, reactive, and apparent energy. You can view energy values from the display. The resolution of the energy value automatically changes from kWh to MWh to GWh (kVAh to MVARh to GWh).

The energy values automatically resets to 0 when it reaches the limit of 999.9GWh, 999.9GVAh, or 999.9GVARh.

The following table lists the energy readings from the power meter:

Characteristics	Description	
Energy values		
Active energy	0 to 999.9GWh	
Active energy	Auto reset to 0 in case of over limit	
Dearting aparau	0 to 999.9GVARh	
Reactive energy	Auto reset to 0 in case of over limit	
Apparent energy	0 to 999.9GVAh	
Apparent energy	Auto reset to 0 in case of over limit	

Power Quality Analysis Values

The power quality analysis values use the following abbreviations:

- · Fundamental phase current rms: I1
- Fundamental phase voltage rms: V1
- RMS of up to three harmonics of phase current:

$$Ix, Iy, Iz, x, y, z = 2, 3, ..., N$$

• RMS of up to three harmonics of phase voltage:

$$Vx, Vy, Vz, x, y, z = 2, 3, ..., N$$

•Total harmonic distortion of the phase current

$$(THD)_I = \frac{\sqrt{I^2 - I_1^2}}{I_1}$$

• Total harmonic distortion of the phase voltage

$$(THD)_V = \frac{\sqrt{V^2 - V_1^2}}{V_1}$$

Harmonic distortion of up to three harmonics on the phase current

$$HD_{I_x} = \frac{I_x}{I_1}, x = 2, 3, ..., N$$

$$HD_{I_y} = \frac{I_y}{I_1}$$
, y = 2, 3,..., N

$$HD_{I_z} = \frac{I_z}{I_1}$$
, z = 2, 3,..., N

 Harmonic distortion of up to three harmonics on the phase voltage:

$$HD_{V_x} = \frac{V_x}{V_1}$$
, x = 2, 3,..., N

$$HD_{V_y} = \frac{V_y}{V_1}$$
, y = 2, 3,..., N

$$HD_{V_z} = \frac{V_z}{V_1}$$
, $z = 2, 3, ..., N$

THD provides a measure of the total distortion present in a waveform. THD is the ratio of harmonic content to the fundamental and provides a general indication of the quality of a waveform. THD is calculated for both voltage and current.

The following table lists the power quality values of the power meter:

Characteristics	Description
	Total,2,3,4,5,,,,,51(51 times) Per phase current (percentage value)
	X,Y,Z,A,B(5 times each time) Per phase current(rms value)
THD	Total,2,3,4,5,,,51(51 times)Per phase voltage(percentage value)
	X,Y,Z,A,B(5 times each time)Per phase voltage(rms value)

Data Record

The power meter records data to SD card, the following table lists data record of the power meter.

Record				
Record interval	1s to 9999s (d	1s to 9999s (default 1min)		
Record format	CSV	CSV		
	8GB Memory	8GB Memory		
Record capacity	Store about 2.5	Store about 2.5K Bytes data each time		
	record 6 years	record 6 years (1min interval)		
	"Current Harmonic"file	ITHD(%),IHD2(%),IHD3(%),,,,,IHD51(%) (Each phase)		
	"Voltage Harmonic"file	UTHD(%),UHD2(%),UHD3(%),,,,,UHD51(%)(Each phas		
		Voltage(V);UTHD(%);Current(A);ITHD(%);		
		Frequency(Hz);Power Factor;		
		Current Demand(A);		
		Current Peak Demand(A)&Date		
		(Each phase and Average)		
Record data		Active Power(W) ;Reactive Power(Var);Apparent		
		Power(Va)		
	"DataSheet"	Active Energy(Wh);Reactive Energy(Varh);Apparent		
	file	Energy(Vah)		
		(Each phase and Summary)		
		Total Active Power Deamnd(W)		
		Total Active Power Peak Deamnd(W)&Date		
		Total Reactive Power Deamnd(Var)		
		Total Reactive Power Peak Deamnd(Var)&Date		
		Total Apparent Power Deamnd(Va)		
		Total Apparent Power Peak Deamnd(Va)&Date		

Other Characteristics

The following table lists other characteristics of the power meter:

Characteristics	Description	
Reset		
Minimum and maximum values	_	
Peak demand values	_	
Current demand calculation method	1 to 60 minutes	
Power demand calculation method	1 to 60 minutes	

Environmental conditions		
Operating temperature	-25℃ to +55℃	
Storage temperature	-40℃ to +85℃	
Humidity rating	5 to 95% RH at 50℃(non-condensing)	
Pullution degree	2	
Overvoltage category	III,for distribution systems up to 277/480VAC	
Dielectric withstand	As per IEC61010-1, Doubled insulated front panel display	
Altitude	3000m Max	
IP degree of protection	IP20 conforming to IEC 60629	
Colour	White	
Contractual warranty	12months	
EMC		
Electrostatic discharge	Level IV(IEC61000-4-2)	
Immunity to radiated fields	Level III (IEC61000-4-3)	
Immunity to fast transients	Level IV (IEC61000-4-4)	
Immunity to surge	Level IV (IEC61000-4-5)	
Conducted immunity	Level III (IEC61000-4-6)	
Immunity to power frequency magnetic fields	0.5mT (IEC61000-4-8)	
Conducted and radiated emissions	Class B (EN55022)	
Standard compliance		
EN 62052-11,EN61557-12,EN 62053-21,EN 62053-22,EN 62053-23,EN 50470-1,EN 50470-3,		
EN 61010-1,EN 61010-2,EN 61010-031		

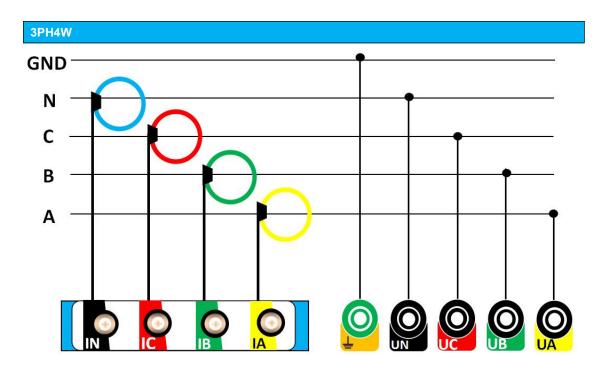
Specification

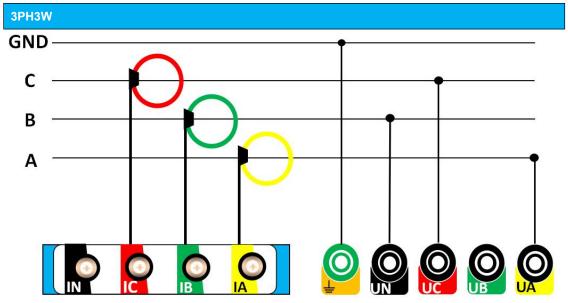
Measurement accuracy			
	600A(0.5% from 6A to) 720A)	
Rated current (3 level selectable)	3000A(0.5% from 10A	A to 3600A)	
	6000A(0.5% from 20A	A to 7200A)	
	600A	MRC-36	
Rogwoski coil connect setting	3000A	NRC-150 or Y-FCT-510	
	6000A	NRC-200 or Y-FCT-800	
OT-	Primary setting:	from 1A to 999999A	
CTs connect setting	Secondary setting:	from 0.001mV to 707mV	
Voltage	0.2% from 5 to 600V		
Power factor	±0.005		
Active/Apparent Power	IEC62053-22 Class 0	.5	
Reactive power	IEC62053-21 Class 2		
Frequency	0.01% from 45 to 65Hz		
Active energy	IEC62053-22 Class 0.5s		
Reactive energy	IEC62053-21 Class 2		
Input-current characteristics			
	600A 0.5A to 720A		
Primary current range	3kA 0.5A to 3600A		
	6kA 0.5A to 7	200A	
Measurement input range	1/2 ²⁵ mV-707mV		
Permissible overload	2V for 10s/hours		
Power Supply			
	2*2900mAh PANASONIC lithium battery		
Power	Working time: 10 hours		
	Charging time: 8 hours		
	5V DC power supply(included adaptor)		
power consumption			
Screen Maximum Brightness	2000mW		
Screen Minimum Brightness	1800mW		
Wire diameter for terminals			
	BNC connector		
Current input	2:10 00:0010.		
Voltage input	Banana plug		

MODBUS-TCP

Communication		
Transmission mode	RJ45 port	
Communication protocol	MODBUS TCP	
Settings		
IP address	Configurable (default 192.168.1.5)	
Port No.	502	

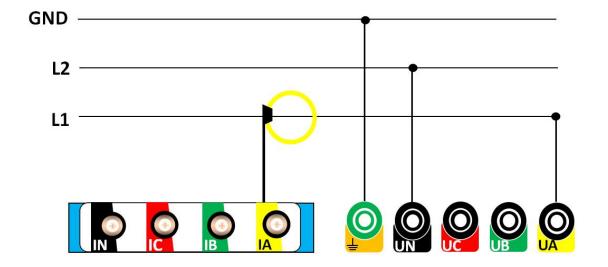
Port definition

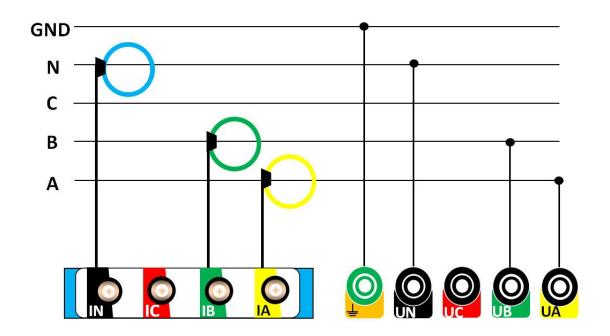

Port number	Port name	Port function	Remarks	
1	IA	A-phase current input		
2	IB	B-phase current input	Current input	
3	IC	C-phase current input	Current input	
4	In	N-phase current input		
5	UN	N-phase voltage input		
6	UC	C-phase voltage input	Voltage input	
7	UB	B-phase voltage input		
8	UA	A-phase voltage input		
9	UE	PE-N voltage input		
10	Power	POWER 5V DC	Power 5-9V DC	
11	USB port	Download log data	Plug out(in) USB DISK	
12	RJ45 port	Mobus-TCP communication	Communication	


Accessories

Accessories	
Voltage wires	5pcs voltage clamp wires with banana plug (2 meters,1.5mm²)
Adaptor	85-265 AC to 5V DC adaptor(default Europe plug)
Remark	

Wiring


- *: Rogowski coil secondary output voltage can not over 333mV rms.
- ^: CT must be voltage output, secondary output can not over 333mV rms.



1PH2W L-L

1PH3W L-L-N

Installation

Current Voltage Input

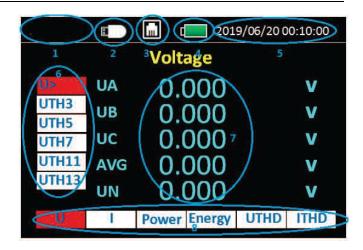
Battery

Power, USB DISK, RJ45 port

Meter operation

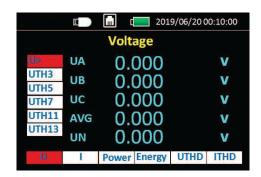
Introduction

The power meter features a panel with TFT LCD, a graphic display, and contextual menu buttons for accessing the information required to operate the power meter and modify parameter settings.


The Navigation menu allows you to display, configure, and reset parameters

Configuration mode

The default factory settings are listed in the following table:


Function	Factory settings
NA/:	3PH4W
Wire	50Hz
	Rcoil
Current	600A
	50mV/kA@50H
Voltage	DIRECT
Record	Switch:Disable
Record	Period:60s
	DHCP:Disable
LAN	IP:192.168.1.10
LAN	Netmask:192.168.1.5
	Gateway:192.168.1.1
	H1=3
	H2=5
Harmonic	H3=7
	H4=9
	H5=11
Password(Low)	1000
Date/Time	-
Demand	Method: sliding block;
Demand	Interval: 15 minutes
Reset	-
	F1:Wire
Fn	F2:Current
[F3:Record
	F4:Fn

Interface

- 1 Company name
- 2 USB DISK connecting
- (3) RJ45 connecting
- (4) Battery usage
- (5) Date&Time
- (6) From Up to down, Voltage, Voltage harmonic 3,5,7,11,13 times
- 7 Display Value
- From left to right,
 Voltage---Current---Power---Energy-- Voltage harmonic---Current harmonic

2. Voltage display Interface

A:"Up" Switch cursor to up

Button:

B:"Down" Switch cursor to down

C:"Left" Switch cursor to left

D:"Right" Switch cursor to Right

E:"ESC", return to previous menu or enter Menu

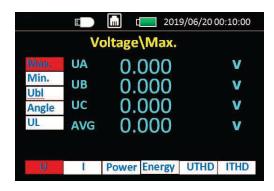
F:"INFO",enter information to check series,FW version No.

G: "Enter" Switch to secondary interface

H:"Light" backgound light switch, 5 level for choice

I:"Power" ON/OFF,long press 3s after a buzzing sound.

Noted: After entering the Secondary interface, press "Left" and "Right" can't switch the bottom item, need to return to the main interface to switch


1. Date display Interface

Left Area from top to bottom:

"U>" Voltage RMS value(Secondary interface)
"UTH3" X times Voltage harmonic RMS value
"UTH5" Y times Voltage harmonic RMS value
"UTH7" Z times Voltage harmonic RMS value
"UTH11" A times Voltage harmonic RMS value
"UTH13" B times Voltage harmonic RMS value

Voltage RMS value "U>" press "Enter" switch to Voltage Secondary interface

2.1 Voltage Secondary Interface

Left Area from top to bottom:


"Max." Voltage Maximum value

"Min." Voltage Minimum value

"Angle" Voltage Unbalance degree

"UL" Line Voltage value

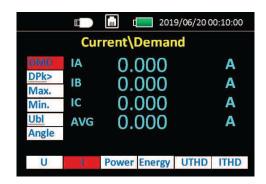
3. Current display interface

Left Area from top to bottom:

"I>" Current RMS value(Secondary interface)

"ITH3" X times Current harmonic RMS value

"ITH5" Y times Current harmonic RMS value


"ITH7" Z times Current harmonic RMS value

"ITH11" A times Current harmonic RMS value

"ITH13" B times Current harmonic RMS value

Current RMS value "U>" press "**OK"** switch to Current Secondary interface

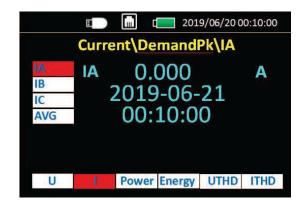
3.1 Current Secondary interface

Left Area from top to bottom:

"EMD" Current demand

"DPK>"Current Maximum demand(Third interface)

"Max." Current Maximum value


"Min." Current Minimum value

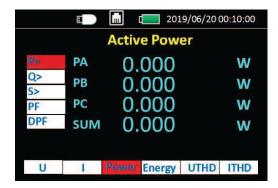
"Ubl" Current unbalance degree

"Angle" Current angle

Current Maximum demand(Third interface)(DPK>) press "**OK**" to switch.

3.1.1 Current Maximum demand(Third interface)

Left Area from top to bottom:


"IA" Phase A Current Maximum demand

"IB" Phase B Current Maximum demand

"IC" Phase C Current Maximum demand

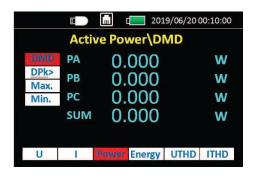
"AVG" Total Average Current Maximum demand

4. Power display interface

Left Area from top to bottom:

Active Power(Secondary interface)

Reactive Power(Secondary interface)


Apparent Power(Secondary interface)

Power Factor

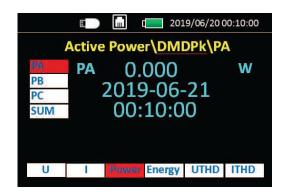
Fundamental Power Factor

(Secondary interface) press **OK** to switch

4.1 Active Power(Secondary interface)

Left Area from top to bottom:

"DMD" Active Power Demand


"Dpk>" Active Power Maximum Demand(Third interface)

"Max." Active Power Maximum Value

"Min." Active Power Minimum Value

"Dpk>" Active Power Maximum Demand(Third interface) press **Enter** to switch

4.1.1 Active Power Maximum Demand(Third interface)

Left Area from top to bottom:

"PA" Phase A Active Power Maximum Demand

"PB" Phase B Active Power Maximum Demand

"PC" Phase C Active Power Maximum Demand

"SUM" Total phase Active Power Maximum Demand

Noted:Reactive Power(Q>) and Apparent Power (S>)
Interface is similar to above

5. Energy display interface

Left Area from top to bottom:

"EP>" Active Energy(Third interface)

"EQ>" Reactive Energy (Third interface)

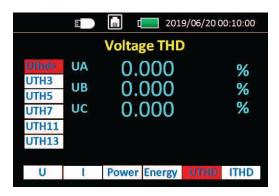
"ES>" Apparent Energy(Third interface)

"Freq" Frequency

5.1 Active Energy in kWh (Third interface)

Left Area from top to bottom:

"EPA" Phase A Active Energy in kWh (total 9bits)


"EPB" Phase B Active Energy in kWh (total 9bits)

"EPC" Phase C Active Energy in kWh (total 9bits)

"SUM" Total phase Active Energy in kWh (total 9bits)

Noted:Reactive Energy(EQ>) and Apparent Energy (ES>) Interface is similar to above

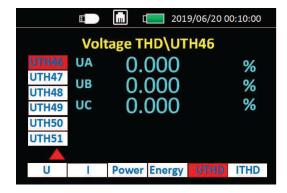
6. Voltage harmonic display interface

Left Area from top to bottom:

"Uthd>'" Total Voltage harmonic percent (Third interface)

"THD3" X times Voltage harmonic percent

"THD5" Y times Voltage harmonic percent


"THD7" Z times Voltage harmonic percent

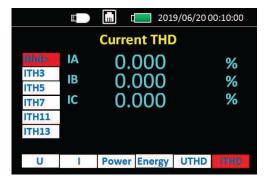
"THD11" A times Voltage harmonic percent

"THD13" B times Voltage harmonic percent

6.1 2 to 51 times Total Voltage harmonic percent

(Third interface) 2019/06/20 00:10:00 Voltage THD\UTH2 UA 0.000% UTH3 UB 0.000% UTH4 UC 0.000UTH5 UTH6 UTH7 Power Energy UTHD ITHD

"UTH2" 2 times Voltage harmonic percent


"UTH3" 3 times Voltage harmonic percent

"UTH3" 3 times Voltage harmonic percent

....

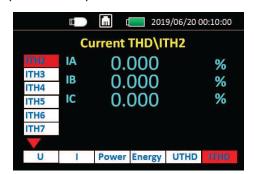
"UTH51" 51 times Voltage harmonic percent

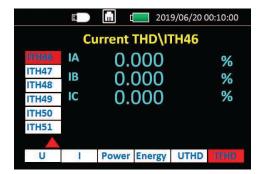
7. Current harmonic display interface

Left Area from top to bottom:

"Ithd>" Total Current harmonic percent (Third interface)

"ITH3" X times Current harmonic percent


"ITH5" Y times Current harmonic percent


"ITH7" Z times Current harmonic percent

"ITH11" A times Current harmonic percent

"ITH13" B times Current harmonic percent

7.1 2 to 51 times Total Current harmonic percent (Third interface)

"ITH2" 2 times Current harmonic percent

"ITH3" 3 times Current harmonic percent

"ITH3" 3 times Current harmonic percent

.

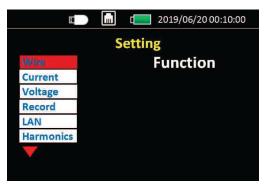
"ITH51" 51 times Current harmonic percent

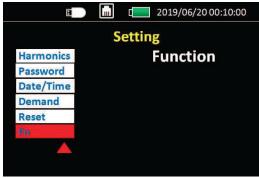
8. Menu Interface

Press "ESC" to switch on Data Menu

Press "Left/Right" and "OK" to choice "Data" "Set"

9. Setting Interface.


Enter "Set" on Menu interface.


Enter Password(Low):1000 (default)

Press "Up/Down" to change number.

Press "Left/Right" to change display number position.

9.1 System Setting Operation

Left Area from top to bottom:

"Wire" Wiring setting

"Current" Configuration Current sensor&Rated current

"Voltage" Configuration voltage sensor ratio

"Record" Storage and download setting

"LAN" MDOBUS TCP setting

"Harmonic" Harmonic times setting

"Password" Password change setting

"Date/Time" Date/Time change setting

"Demand" Demand setting

"Reset" Reset Energy/Min/Max value

"Fn" F1 F2 F3 F4 KeyRocket setting

9.1.1 Wire setting

Press "OK" ,change to next line.

Press Up/Down, modify value on current line.

"Mode" Choice wiring type

"3PH4W" three phase 4 wire

"3PH3W" three phase 3 wire

"1PH2W_LL" single phase 2 wire L_L type

"1PH2W_LN" single phase 2 wire L_N type

"1PH3W_LLN" single phase 3 wire L_L_N type

9.1.2 Current Setting

Press "OK" ,enter to secondary interface.

"IABC" setting Phase A,B,C Current sensor

 $\hbox{\it `IN''} \ setting \ Phase \ N \ Current \ sensor$

9.1.2.1 Current secondary interface setting.

Press "OK", change to next line.

Press Up/Down, modify value on current line.

Press Left/Right, change display number position.

"IABC Con" and "IN Con": "Rcoil" and "CT" selection Choice"Rcoil",Rogowski coil connect directly(No integrator connect)

FSA: Rated Current selection

600A/3kA/6kA

Coil:each Rated current corresponding only one ratio of Rogowski coil,can't be change.

600A 50mV/kA@50Hz

3kA 85mV/kA@50Hz

6kA 50mV/kA@50Hz

Choice"CT",333mV Current Transformer connect

"CT Pri(A)": CT Primary Rated Current A Value

"CT Sec(mV)":CT Secondary Rated output mV value

Noted: If Choice "Rcoil" in "IABC Con" and "IN Con" setting, Then this interface will show Rogowski coil rated current selection.

If Choice "CTCon",this setting is setting CT primary and secondary

Noted: Out of "IABC" and "IN" setting interface, will have "Save Changes" notifications, must press

"OK" to Save modify. If press "ESC", the modify can't be save.

9.1.3 Voltage Setting

Press "OK" ,enter to secondary interface.

"UABC" setting Phase A,B,C Voltage sensor

"UN" setting Phase N Voltage sensor

9.1.3.1 Voltage secondary interface setting.

Press \mathbf{OK} ,change to next line.

Press **Up/Down**,modify value on current line.

Left/Right, change display number position.

"UABC Con" and "UN Con": "DIRECT" and "VT" selection

Choice"DIRECT",Voltage directly connect
Choice"VT",Voltage transformer connect
VT Pri(V): Voltage sensor Secondary output value

VT Sev(V): Voltage sensor Primary input value

If Choice "DIRECT", the VT ratio setting will not
display in this interface.

9.1.4 Record setting

Press "OK" ,enter to secondary interface.

"Store" switch record function

"Download" setting Phase N Voltage sensor

9.1.4.1 Store secondary interface setting of Record

"Switch" choice Enable or Disable record function

"Enable" start record function

"Disable" stop record function.

"Period" setting record interval time.(from 1s to 99999s,default 60s)

9.1.4.2 Download secondary interface setting of Record

"BeginDT" Beginning date setting

"EndDT" Ending date setting

After setting time,press "OK" to download record data to USB-DISK

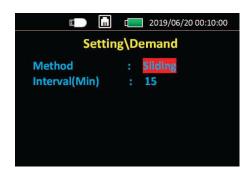
Setting the Date&Time for system

Configuration LAN for MODBUS-TCP

9.1.6 Harmonic times setting

Could measure 5 different times harmonic value A or V. Setting times range: 2 to 51 times.

9.1.7 Password setting

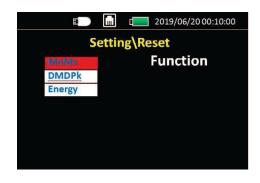


Password default is 1000

Enter again "set" interface, should enter new password after modify.

9.1.8 Date/Time Setting

9.1.9 Demand setting



"Method" choice demand type:

Sliding: Time sliding mode Fixed: Time fixed mode

Interval (Min): from 1 to 60 minute

9.1.10 Reset setting

MnMx: Reset Minimum/Maximum value DMDPk: Reset Maximum Demand value

Energy: Reset Energy

9.1.11 Fn setting

Fn is shortcut key for F1 F2 F3 F4.

After setting, when press F1 could enter any of interface of "setting" in "data Menu"

9.1.12 Information interface

Info interface is used for display the information

Model: meter Model No.

FW Ver: Meter Firmware version Number

SN: Series Number